Environmental Fluid Dynamics, Exercise Sheet 6
Christoph Garbe and Jana Schnieders
Wintersemester 2012/2013

To be returned until 21.12.2012, in the lecture, by mail to jana.schnieders@iwr.uni-heidelberg.de or to Speyerer Str. 6, 3rd floor (G 302 or H 306)

1 (30 Pts)
Starting with the RANS (Reynolds averaged Navier-Stokes) momentum equation, derive the equation for the rate of change of the kinetic energy of the average flow field (Kundu, equation 12.46).

\[
\frac{\partial E}{\partial t} + \frac{\partial E}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{U_i}{P_0} + 2\nu S_{ij} - \frac{\partial U_i}{\partial x_j} \right) - 2\nu S_{ij} S_{ij} - 2\frac{\partial U_i}{\partial x_j} \frac{\partial U_i}{\partial x_j} - \frac{8}{P_0} \pi I_3,
\]

for \(E \) the mean kinetic energy and a gain of turbulent kinetic energy. It is commonly known as the shear production term.

2 (30 Pts)
From the equation for the kinetic energy of the average flow field (s.a.) a production of turbulent kinetic energy \(P \) can be defined as

\[
P = -u'_i u'_j \frac{\partial U_i}{\partial x_j}
\]

with the Reynolds stresses \(u'_i u'_j \) and the mean-flow gradients \(\partial U_i/\partial x_j \).

2.1
Use the eddy-viscosity assumption (the momentum transfer caused by turbulent eddies can be modeled with an eddy viscosity) and obtain an expression for \(P \). How does this relate to dissipation?

2.2
Show that the production is only affected by

1. the symmetric part of the velocity-gradient tensor, and

2. the anisotropic part the of Reynolds-stress tensor.

1